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Abstract—Multimodal large language models (MLLM) strug-
gle to understand circuit schematics due to their limited recog-
nition capabilities. This could be attributed to the lack of high-
quality schematic-netlist training data. Existing work such as
AMSnet applies schematic parsing to generate netlists. However,
these methods rely on hard-coded heuristics and are difficult to
apply to complex or noisy schematics in this paper. We therefore
propose a novel net detection mechanism based on segmentation
with high robustness. The proposed method also recovers posi-
tional information, allowing digital reconstruction of schematics.
We then expand the AMSnet dataset with schematic images from
various sources and create AMSnet 2.0. AMSnet 2.0 contains
2,686 circuits with schematic images, Spectre-formatted netlists,
OpenAccess digital schematics, and positional information for
circuit components and nets, whereas AMSnet only includes 792
circuits with SPICE netlists but no digital schematics.

Index Terms—AMS circuit design, MLLM, circuit topology,
front-end design

I. INTRODUCTION

Researchers employ multimodal large language models
(MLLMs) in various applications in analog and mixed-signal
(AMS) circuit design, such as topology design [1]]-[4]], siz-
ing [5], layout generation [6]], design rule check (DRC)
code generation [7], and so on. This demonstrates that these
MLLMs possess abundant field knowledge. However, current
MLLMs still face difficulties in schematic recognition, un-
derstanding [8], and netlist generation. Generated data suffer
from incorrectness due to hallucination, and generally cannot
be used for their intended purposes, such as simulation.

One of the main reasons for the limited ability of MLLM:s to
recognize circuit schematics is the lack of high-quality multi-
modal training data, such as schematic-netlist pairs. Existing
datasets either only focus on a single modality, such as image
or language, or are too small to use for (M)LLM training.
To address this issue and collect more high-quality data, we
developed and released a data labeling platform, where the
user uploads schematics and labels their schematic elements,
wires, and expert insights, as shown in Fig. [I| Backed by this
platform, we construct AMSnet 2.0, a large-scale AMS dataset
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Fig. 1: AMSnet 2.0 workflow for multimodal dataset construc-
tion.

containing schematics, netlists, and position information for
schematic elements and nets.

In addition to manual annotations of circuit information,
establishing the correspondence between schematic images
and netlists is crucial for the dataset. However, the process
often relies on manually interpreting images and then writing
the netlists, which was time-consuming and error-prone. To
address this issue, previous work [8], [9] proposes image
processing-based methods to generate netlists from schematics
to naturally form desired multi-modal pairs. Some methods in-
clude template matching [10] to detect schematic elements and
the Hough transform [11]] to identify wires. These methods are
able to establish connectivity between schematic elements and
generate netlists. However, they generally require schematic
images to be clear and free of additional markings, which
presents deficiencies in efficiency and robustness. It is difficult
for these methods to process noisy images, as shown in Fig. [2]

On the other hand, the above methods process wire pixels
into nets via graph search algorithms or image transformations.
The problem with these methods is that they only observe
wire pixels as is and do not use any contextual information,
such as where the elements are and what they connect to.
As a result, they may have trouble distinguishing wires from
other illustrative markings (e.g. the boxes in Fig. 2] (a) can
be considered as wires). To compensate, these studies may
assume that markings tend to show up in different colors, and
then use techniques such as binarization to filter them out in
a preprocessing step. However, this could introduce additional
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Fig. 2: Examples of noisy schematics: (a) overlaid markings
and (b) partial highlighting

issues with a different type of illustration, as shown in Fig. 2]
(b), where parts of the schematic may be incorrectly filtered.

This paper presents a more robust method for net detection.
It uses a deep-learning-based image instance segmentation
model to accurately determine whether lines represent wires
based on contextual information. By offloading the decision
process to the training dataset, our method effectively differ-
entiates wires from markings and is significantly more robust
than hard-coded heuristics. We evaluate it on the AMSnet 2.0
testing set, which we divide into three difficulty levels based on
schematic complexity, presence of illustrative markings, and
image quality. Using a confusion matrix to analyze element
types and connections in the netlist, we achieve F1 scores
of 90.19%, 84.17%, and 80.39% for netlist generation across
these splits, respectively.

Furthermore, instance segmentation provides us with precise
positional information about wires, allowing us to perform
skeletonization to extract key coordinates such as ends, di-
verges, and turns, and summarize nets as sets of line segments.
This enables the automatic reconstruction of digital schematics
in widely-used formats such as OpenAccess, so that engineers
can conveniently access schematics in EDA software, without
having to manually modify netlists.

To summarize, our contributions in this work are as follows.

o We construct and release AMSnet 2.0, a large-scale AMS
dataset containing image and digital schematics, netlist,
and position data for schematic elements and wires.

o We develop a more robust algorithm for schematic pars-
ing and netlist generation, eliminating the need for hard-
coded heuristics in net detection.

« We develop a labeling platform for AMS schematics, and
release it at this link to support expansion of AMSnet 2.0.

The remainder of this paper is organized as follows. Section
I introduces the schematic labeling platform. Section III
presents the algorithms for schematic and netlist generation
based on circuit images. Section IV shows the experimental
results. Finally, Section V discusses potential future work
based on AMSnet 2.0 and concludes.

II. SCHEMATIC LABELING

The section describes the construction process for AMSnet
2.0, which includes image collection, schematic element and
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Fig. 3: The full schematic processing pipeline: schematic
element detection, net segmentation, Spectre format netlist
generation, and digital schematic reconstruction in OpenAcess
format.

net detection, and netlist generation. We collect 2686 circuit
schematics from textbooks [12]] and public competitions [[13]],
and manually annotate them. Fig. [I] presents an overview.

a) Element Labeling: Users upload circuit schematics
and draw bounding boxes for schematic elements on the
graphical interface. They then assign the correct category
labels (e.g., PMOS). The dataset is in YOLO format, including
the coordinates of the object center and its width and height.
Following [[13]], we also annotate the cross-points of all wires,
categorizing whether they are visually intersecting or function-
ally connected.

b) Net Labeling: Users label all the nets in a schematic
image. Specifically, a net consists of one or more line seg-
ments. The users label each line segment by tracing them on
the graphical interface, using a different net instance for each
net. This groups all segments of the same net under the same
instance, distinguishing them from other nets. The dataset
contains each net and the segments it comprises, including
the coordinates (start and end points) of each segment.

c) Insight Labeling: Engineers and experts can label the
type (e.g. OPAMP), name (e.g. cascode), function (e.g. signal
amplification), and characteristics (e.g. high gain) of the circuit
topology based on the schematic. We store this data in the form
of key-value pairs. These expert insights will play a crucial
role in driving the MLLM-driven automatic AMS design in
the future.

III. SCHEMATIC AND NETLIST GENERATION

Fig. [3| presents the proposed methods of netlist and
schematic generation. We use a deep-learning-based vision
model to recognize the schematic elements (i.e. voltage
sources, capacitors, transistors, amplifier symbols, ground
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symbols, etc.) and nets in the input images. Based on the
recognition results, our method automatically reconstructs the
digital schematics and generates the corresponding netlists.

A. Device Detection

As in previous work [4], [8], [9], [13] demonstrates,
SOTA object detection models are able to effectively identify
schematic elements. However, our approach extends beyond
previous efforts by also detecting and recognizing the inter-
sections of circuit nets. Specifically, when two wires meet at
a cross-point, the presence of a junction (i.e. a dot) indicates
that the wires belong to the same net; if no junction is present,
we consider them separate nets.

B. Wire Segmentation

Previous work on wire segmentation and net detection often
relies on proposal-based instance segmentation methods [14]],
[15]. These methods first generate potential bounding box
proposals and then apply segmentation through a dedicated
module. However, they struggle to fully encapsulate all pixels
of a wire within a single proposal and may include pixels
from multiple nets, leading to suboptimal segmentation. Addi-
tionally, [16] explores end-to-end instance segmentation tech-
niques, but it still faces challenges in accurately distinguishing
intersecting nets.

To address these limitations, we propose a more robust and
efficient two-stage approach. The flow starts with a semantic
segmentation network (U-net [17]) to segment all wires and
produce wire masks, as shown in Fig. a). The extracted
wire masks are then post-processed to accurately separate
intersecting nets, as shown in Fig. d(b). Our method eliminates
the need for bounding box proposals, substantially improving
segmentation accuracy and ensuring precise net delineation.

C. Mocked Marking Data Augmentation

Though the aforementioned methods perform well on clean
schematics, they still struggle in net segmentation for noisy
schematics. An example is shown in Fig. (a), where
rectangles are drawn over the schematics. These noises are
usually overlay markings for illustration purposes; however,
they significantly interfere with schematic interpretation.

Data augmentation is a standard practice in machine learn-
ing, where raw training data is altered to improve the ro-
bustness of the trained model. In this case, given sufficient
training data and a reasonable data distribution, the proposed
model is capable of handling data noise natively. We therefore
augment raw schematics with rectangles and text markings,
without changing the net mask labeling. We randomly generate
mocked markings over the schematics, and ensure that the
placements of the rectangles do not directly cross over the
schematic elements. After this augmentation step, the trained
model is able to successfully detect wires through the mocked
markings and handle these special cases.

D. Net Recognition

After device and wire recognition, the flow needs to un-
derstand how they are connected to form nets. Given the
segmented wire masks from the above steps, those that do not
intersect each other belong to separate connected components.
We assign a unique net label to each connected component.
Fig. [ (b) shows an example of wire masks that interconnect
and are affected by cross lines. In this case, a mask is applied
to the area around the intersection points, which splits the
connected component at the intersection. Then, the tool merges
the opposite connections to precisely identify the locations of
multiple nets. Specifically, it orders all four connections to the
intersection based on the angle between the connecting points
and the center of the intersection, as shown in the green and
purple numbers 1, 2, 3, 4 in Fig. f{b). Finally, the connections
1, 3 and 2, 4 are grouped to resolve the intersection.

E. Netlist Generation & Schematic Reconstruction

After detecting each schematic element and its rotation
angle, we can identify the pin areas for each element (i.e., the
pins of a resistor are located at the midpoint of each end of
its bounding box). By identifying the nearest or intersecting
net labels for each element and its corresponding pins, the
tool can establish the connectivity relationship and generate a
precise netlist.

So far, the tool collected the coordinates of the schematic
elements and net segments to reconstruct editable digital
schematics in widely-used formats, such as OpenAccess. This
process ensures that the generated electronic schematics are
readable without the need for manual circuit construction and
allows for further modifications and simulations.

IV. EXPERIMENTS
A. Experiment Setting

We train the models on labeled data with a training —
validation - testing split of 1986 - 500 - 200 schematics.
We employ YOLOL11 for element detection, training it for
500 epochs with a batch size of 16, along with other default
parameters of YOLOI11. For wire segmentation, we use two
models, UNet and YOLOI11-seg, and compare their results.
We train UNet for 1000 epochs with a batch size of 32, and
YOLOI11-seg for 1500 epochs with a batch size of 16, both
with default parameters. We conduct all experiments on an
NVIDIA RTX 4090 GPU.

B. Evaluation Protocol

For the evaluation of netlist generation, we select three test
sets with varying levels of difficulty—easy (80), medium (70),
and hard (50)—based on the complexity of the circuit topology
as well as the quality and style of the images. Specifically,
we manually evaluate the test set schematics on four metrics:
high element count (> 10), crossing wires, overlaid markings,
and low resolution. Images satisfying none of the above are
labeled “easy”, images satisfying exactly one of the above
are “medium”, and the rest are “hard”. Fig. [3] presents three
examples, each from the easy, medium, and hard splits, along
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Model Easy = Medium  Hard
Unet [|17] 90.19 84.17 80.39
YOLOI11-seg [[15]  83.62 71.10 73.11

TABLE I: Netlist generation F1 scores

with resulted element detection, net detection, and Spectre
netlist generated by the UNet-based procedure.

C. Netlist Generation Results

As previously mentioned, we apply two options for the wire
detection in our experiments. One is YOLO11-seg [[15], which
directly detects wires into separate nets. The other is UNet,
which first detects wire chunks, and then algorithmically post-
processes them into separate nets with the help of crossing
points detected during element detection. We therefore report
two sets of results, as shown in Table [I]

The reported scores are evaluated via a confusion matrix.
For each netlist component (schematic elements excluding
VDD, GND, ports, etc.) and net connection in the ground truth
netlist, if it was correctly predicted in the predicted netlist, we
mark this as a true positive. If it was missing or predicted
incorrectly, we mark this as a false negative. Finally, if the
element or connection does not exist but was predicted (i.e.
extra capacitor, or extra connection on a component, etc.),
we mark this as a false positive. From this point, we use
the standard precision-recall-F1 definition, and report the F1
scores in Table [l Note that incorrect type prediction, such as
predicting capacitors as resistors, is also a false negative.

Since different netlists could have different element names
and net names, direct comparison may undermine the results;
we therefore consider all permutations between ground truth
names and predicted names. For example, for netlist ckt_192

shown in Fig. [§| (a), the element names for the predicted
netlist include 10 and M9-12, and the net names include VDD,
VSS, and net2-6. Suppose the ground truth VDD is labeled
“netl”, the correct permutation should match netl against
VDD among others. We report the F1 score generated by the
best possible permutation. Since the computation complexity
for permutations grows exponentially, we manually determine
the F1 score when the schematics are too complex.

D. Schematic Reconstruction Results

Fig. [6] presents the schematic reconstruction results for the
images shown in Fig. 5] The automatic generation files are
in OpenAccess format and displayed in Cadence Virtuoso.
Compared with the original images, we can see that our flow
has successfully reconstructed the digital schematics These
automatically reconstructed schematics accurately reproduce
the element layout, net positions, and connections depicted in
the images, requiring minimal manual intervention.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we introduce AMSnet 2.0, a larger-scale
dataset that includes schematics images, Spectre format
netlists, and position information. We propose a method based
on instance segmentation for net detection. Utilizing the de-
tected elements and net position information, we implement
an automatic tool that can generate netlists and reconstruct
schematics in OpenAccess format. We release our data anno-
tation platform, allowing the community to annotate circuit
data and further enlarge the dataset.

A. AMSnet 2.0 Statistics

Fig. [§] presents the data distribution for the 2686 circuits in
AMSnet 2.0. We can see that the majority of circuits include
around 10-20 elements and nets, but the larger ones could
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Fig. 5: Results for element detection (top), net detection (middle), and Spectre format netlist generation (bottom), from the
UNet procedure. Columns (a), (b), and (c) present examples from easy, medium, and hard splits respectively.

contain up to 80. Fig. [9] presents the element type distribution;
we can see that AMSnet 2.0 contains hundreds to thousands
of each type. The full dataset will be open-sourced upon the
acceptance of this paper, along with corresponding Spectre
format netlists, OpenAccess format schematics, and position
information for all elements and net segments.

B. Future Applications of AMSnet2.0

The multimodal AMSnet 2.0 establishes the correspondence
between schematics and netlists and collects a large amount
of human design experience through the annotation platform.
With AMSnet 2.0 as the dataset, it is possible to empower
MLLMs or other Al models to address key challenges in AMS
circuit design in the future.

a) Schematics Generation from Netlist: Converting a
netlist into a readable schematic can help designers quickly
understand an AMS circuit, which has been a long-standing
EDA challenge. With the extensive amount of schematic-
netlist pairs in AMSnet 2.0, we plan to train an LLM to
facilitate the conversion of netlists to readable schematic

diagrams. This work will greatly ease the understanding and
debugging of AMS circuits generated by LLMs. It will also
enable the creation of more schematic-netlist pairs and further
enlarge AMSnet 2.0.

b) LLM Enhanced for AMS Circuit Understanding:
Due to the current lack of datasets that include large-scale,
high-quality AMS circuit schematics and netlists, the perfor-
mance of SOTA LLMs and MLLMs in understanding circuit
schematics remains suboptimal [§]. Specifically, they struggle
to accurately generate the circuit netlists. Building on AMSnet
1.0, the 2.0 dataset includes a richer set of visual information
with the introduction of key-point coordinates. This data is
crucial for training AMS-specific MLLMs to enhance their
understanding of circuit schematics. We conduct supervised
fine-tuning (SFT) of the MLLM using the existing data. As
shown in Fig. [7} it is evident that after SFT, the MLLM
possesses basic capabilities in detecting and locating elements
in simple circuit schematics, although their performance on
more complex diagrams still needs improvement.

In the future, we expect continuous growth of AMSnet
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capabilities in understanding AMS circuit schematics.
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